
CS103 Handout 29
Spring 2015 June 3, 2015

Extra Practice Problems 8

Here's another batch of practice problems to work through. Please let us know if there are any topics
you'd specifically like some more practice with. We'd be happy to provide extra practice problems
on those topics!

Problem One: Set Theory
If A ⊆ ℕ and B ⊆ ℕ, then the Minkowski sum of A and B, denoted A + B, is the set

A + B = { m + n | m ∈ A and n ∈ B }

This question explores properties of the Minkowski sum.

i. Prove or disprove: |A + B| = |A| + |B| for all sets A ⊆ ℕ and B ⊆ ℕ.

ii. What is ℕ + ℕ? Prove it.

Problem Two: Induction
Let k ≥ 1 be any natural number. Prove, by induction, that (k+1)n – 1 is a multiple of k for all n ∈ ℕ.

Problem Three: Graphs
Let G be a connected, undirected graph with n ≥ 2 nodes.

i. Prove that α(G) ≤ n – 1. (Recall that α(G) is the independence number of G, the size of the
largest independent set in G).

ii. Prove or disprove: for any n ≥ 2, there is an undirected, connected graph G with n nodes
where α(G) = n – 1.

Problem Four: First-Order Logic
Given the predicates

• TM(M), which states that M is a TM;
• String(w), which states that w is a string; and
• Accepts(M, w), which states that M accepts w,

Write a statement in first-order logic that says “the RE languages are closed under union.”

2 / 4

Problem Five: Functions
This question explores properties of special classes of functions.

i. Prove or disprove: if f : ℝ → ℝ is a bijection, then f(r) ≥ r for all r ∈ ℝ.

ii. Prove or disprove: if f : ℕ → ℕ is a bijection, then f(n) = n for all n ∈ ℕ.

iii. Prove or disprove: if f : ℝ → ℝ and g : ℝ → ℝ are bijections, then the function h : ℝ → ℝ
defined as h(x) = f(x) + g(x) is also a bijection.

Problem Six: Binary Relations
If R is a binary relation over a set A, the complement relation Rc is the binary relation over A defined
as follows:

aRcb if ¬aRb

In other words, aRcb is true precisely if aRb is false.

i. Prove or disprove: if R is a binary relation over a nonempty set A, then at least one of R or
Rc is a partial order.

ii. Prove or disprove: if R is a binary relation over a nonempty set A, then at most one of R or
Rc is a partial order.

Problem Seven: The Pigeonhole Principle
Suppose that n people are seated at a round table at a restaurant. Each of the n people orders a dif-
ferent entree for dinner. The waiter brings all of the entrees out and places one dish in front of each
person. Oddly enough, the waiter doesn't put anyone's dish in front of them.

Prove that there is some way to rotate the table so that at least two people have their entree in front
of them.

Problem Eight: DFAs, NFAs, and Regular Expressions
Consider the following language over Σ = { O, E }:

PARITY = { w | w has even length and has the form En or
 w has odd length and has the form On }

For example, EE ∈ PARITY, OOOOO ∈ PARITY, EEEE ∈ PARITY, and ε ∈ PARITY, but
EEE ∉ PARITY, EO ∉ PARITY, and OOOO ∉ PARITY.

i. Write a regular expression for PARITY.

ii. Design a DFA that accepts PARITY.

3 / 4

Problem Nine: Nonregular Languages
Let Σ = {a, b} and let L = { w ∈ Σ* | w has the same number of a's and b's and |w| ≥ 10100 }. Prove
that L is not a regular language.

Problem Ten: Context-Free Grammars
Let Σ = {a, b} and let L = { w ∈ Σ* | w is a palindrome and w contains abba as a substring }. Write
a context-free grammar for L.

Problem Eleven: Turing Machines
Let Σ = {0, 1} and let L = { w ∈ Σ* | w is a palindrome }. Design a TM for L at the level of drawing
individual states and transitions.

Problem Twelve: R and RE Languages
Here's an interesting fact: if L is a language where L ∈ RE and L ∈ RE, then L ∈ R. In this problem,
we'd like you to prove this fact.

Let L be a language with the above properties. This means that there's a verifier V for L and a veri-
fier X for L. In software, these could be represented as methods with the following signatures:

bool imConvincedIsInL(string w, string c)

bool imConvincedIsNotInL(string w, string c)

Using these methods, write a program that is a decider for L, then prove that your program is cor-
rect (that is, prove that if w ∈ L, then your program accepts w, and if w ∉ L, then your program re-
jects w.) As a hint, if you take any w ∈ Σ*, under what circumstances will there be a certificate that
causes the first of these methods to accept? Under what circumstances will there be a certificate that
causes the second of these methods to accept?

Problem Thirteen: Impossible Problems
Let Σ = {a, b} and let L = { ⟨M⟩ | M is a TM and ℒ(M) ⊆ a* }. Prove that L ∉ RE.

4 / 4

Problem Fourteen: P and NP
Recall from lecture that the language 3COLOR = { ⟨G | ⟩ G is a 3-colorable graph } is NP-com-
plete. The language 2COLOR = { ⟨G | ⟩ G is a 2-colorable graph } is known to be in P (you don't
need to prove this). Below is a purported proof that P = NP:

Theorem: P = NP.

Proof: As we will prove in the lemma below, we have 2COLOR ≤P 3COLOR. Since
3COLOR is NP-hard, this means 2COLOR is NP-hard. Because 2COLOR ∈ P and
P ⊆ NP, we know that 2COLOR ∈ NP. Thus 2COLOR ∈ NP and 2COLOR is NP-
hard, so NP-complete. Since 2COLOR is NP-complete and 2COLOR ∈ P, we thus
have that P = NP. ■

Lemma: 2COLOR ≤P 3COLOR.

Proof: We'll give a polynomial-time mapping reduction from 2COLOR to 3COLOR,
which proves that 2COLOR ≤P 3COLOR.

Given a graph G = (V, E), let f(⟨G) be the graph ⟩ G' defined in terms of G by
adding a new node v to G and adding an edge from v to each other node in G. We
state without proof that f can be computed in polynomial time. Therefore, we will
prove that ⟨G ⟩ ∈ 2COLOR iff f(⟨G) = ⟩ ⟨G' ⟩ ∈ 3COLOR, from which we can con-
clude that f is a polynomial-time mapping reduction from 2COLOR to 3COLOR, so
2COLOR ≤P 3COLOR.

First, we prove that if G is 2-colorable, then G' is 3-colorable. To see this, consider
any 2-coloring of G. For each node in G' that also appears in G, color that node the
same color as its corresponding node in G. Then, color v the unused third color.
This gives a 3-coloring of G'.

Next, we prove that if G' is 3-colorable, then G is 2-colorable. To see this, consider
any 3-coloring of G'. We claim that all of the nodes in G' that also belong to G are
colored with only two colors. To see this, note that since all these nodes are con-
nected to the new node v, they must all have a color distinct from v's color, and
thus must be colored using only two colors. Therefore, if we color the nodes in G
the same color as the corresponding nodes in G', we end with a 2-coloring of G. ■

The above proof, unfortunately, is incorrect. What is wrong with this proof? Be specific. (The
function f described in the lemma can indeed be computed in polynomial time, so that isn't the er-
ror in the proof.)

